Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast, Stable and Efficient Approximation of Multi-parameter Persistence Modules with MMA (2206.02026v3)

Published 4 Jun 2022 in math.AT and cs.CG

Abstract: In this article, we introduce a new parameterized family of topological invariants, taking the form of candidate decompositions, for multi-parameter persistence modules. We prove that our candidate decompositions are controllable approximations: when restricting to modules that can be decomposed into interval summands, we establish theoretical results about the approximation error between our candidate decompositions and the true underlying module in terms of the standard interleaving and bottleneck distances. Moreover, even when the underlying module does not admit such a decomposition, our candidate decompositions are nonetheless stable invariants; small perturbations in the underlying module lead to small perturbations in the candidate decomposition. Then, we introduce MMA (Multipersistence Module Approximation): an algorithm for computing stable instances of such invariants, which is based on fibered barcodes and exact matchings, two constructions that stem from the theory of single-parameter persistence. By design, MMA can handle an arbitrary number of filtrations, and has bounded complexity and running time. Finally, we present empirical evidence validating the generalization capabilities and running time speed-ups of MMA on several data sets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. On interval decomposability of 2D persistence modules. In CoRR. arXiv:1812.05261, 2018.
  2. Persistence images: a stable vector representation of persistent homology. Journal of Machine Learning Research, 18(8):1–35, 2017.
  3. On approximation of 2D persistence modules by interval-decomposables. In CoRR. arXiv:1911.01637, 2019.
  4. Filtration-domination in bifiltered graphs. In CoRR. arXiv:2211.05574, 2022.
  5. Persistent homology and materials informatics. In Nanoinformatics, pages 75–95. Springer-Verlag, 2018.
  6. Algebraic stability of zigzag persistence modules. Algebraic and Geometric Topology, 18(6):3133–3204, 2018.
  7. Stability of 2-parameter persistent homology. In CoRR. arXiv:2010.09628, 2020.
  8. An introduction to multiparameter persistence. In CoRR. arXiv:2203.14289, 2022.
  9. On rectangle-decomposable 2-parameter persistence modules. Discrete & Computational Geometry, 2022.
  10. Local characterizations for decomposability of 2-parameter persistence modules. In CoRR. arXiv:2008.02345, 2020. To appear in Algebras and Representation Theory.
  11. Signed barcodes for multi-parameter persistence via rank decompositions and rank-exact resolutions. In CoRR. arXiv:2107.06800, 2021.
  12. Peter Bubenik. Statistical topological data analysis using persistence landscapes. Journal of Machine Learning Research, 16(3):77–102, 2015.
  13. Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46(2):255–308, 2009.
  14. Multiparameter persistence image for topological machine learning. In Advances in Neural Information Processing Systems 34 (NeurIPS 2020), pages 22432–22444. Curran Associates, Inc., 2020.
  15. PersLay: a neural network layer for persistence diagrams and new graph topological signatures. In 23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020), pages 2786–2796. PMLR, 2020.
  16. Sliced Wasserstein kernel for persistence diagrams. In 34th International Conference on Machine Learning (ICML 2017), volume 70, pages 664–673. PMLR, 2017.
  17. The structure and stability of persistence modules. SpringerBriefs in Mathematics. Springer-Verlag, 2016.
  18. The UCR time series classification archive, 2015.
  19. Elder-rule-staircodes for augmented metric spaces. In 36th International Symposium on Computational Geometry (SoCG 2020), pages 26:1–26:17. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020.
  20. Decomposition of exact pfd persistence bimodules. Discrete & Computational Geometry, pages 1–39, 2019.
  21. Vines and vineyards by updating persistence in linear time. In 22nd Annual Symposium on Computational Geometry (SoCG 2006), pages 119–126. Association for Computing Machinery, 2006.
  22. Computing generalized rank invariant for 2-parameter persistence modules via zigzag persistence and its applications. In 38th International Symposium on Computational Geometry (SoCG 2022), volume 224, pages 34:1–34:17. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2022.
  23. Dualities in persistent (co)homology. Inverse Problems, 27(12):124003, 2011.
  24. Computational topology for data analysis. Cambridge University Press, 2022.
  25. Rectangular approximation and stability of 2-parameter persistence modules. In CoRR. arXiv:2108.07429, 2021.
  26. Generalized persistence algorithm for decomposing multiparameter persistence modules. Journal of Applied and Computational Topology, 2022.
  27. Computational topology: an introduction. American Mathematical Society, 2010.
  28. Generalized persistence diagrams for persistence modules over posets. In CoRR. arXiv:1810.11517, 2018.
  29. Fast minimal presentations of bi-graded persistence modules. In Symposium on Algorithm Engineering and Experiments (ALENEX 2021), pages 207–220, 2021.
  30. Claudia Landi. The rank invariant stability via interleavings. In Research in Computational Topology, pages 1–10. Springer, 2018.
  31. Michael Lesnick. The theory of the interleaving distance on multidimensional persistence modules. Foundations of Computational Mathematics, 15(3):613–650, 2015.
  32. Interactive visualization of 2D persistence modules. In CoRR. arXiv:1512.00180, 2015.
  33. Computing minimal presentations and bigraded Betti numbers of 2-parameter persistent homology. In CoRR. arXiv:1902.05708, 2019.
  34. Zigzag persistence via reflections and transpositions. In 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2015), pages 181–199. Society for Industrial and Applied Mathematics, 2015.
  35. James Munkres. Elements of algebraic topology. CRC Press, 1984.
  36. Steve Oudot. Persistence theory: from quiver representations to data analysis, volume 209 of Mathematical Surveys and Monographs. American Mathematical Society, 2015.
  37. Topological data analysis for genomics and evolution. Cambridge University Press, 2019.
  38. A stable multi-scale kernel for topological machine learning. In 28th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015), pages 4741–4748. IEEE Computer Society, 2015.
  39. Oliver Vipond. Local equivalence of metrics for multiparameter persistence modules. In CoRR. arXiv:2004.11926, 2020.
  40. Oliver Vipond. Multiparameter persistence landscapes. Journal of Machine Learning Research, 21(61):1–38, 2020.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com