Papers
Topics
Authors
Recent
2000 character limit reached

Video-based Human-Object Interaction Detection from Tubelet Tokens (2206.01908v1)

Published 4 Jun 2022 in cs.CV

Abstract: We present a novel vision Transformer, named TUTOR, which is able to learn tubelet tokens, served as highly-abstracted spatiotemporal representations, for video-based human-object interaction (V-HOI) detection. The tubelet tokens structurize videos by agglomerating and linking semantically-related patch tokens along spatial and temporal domains, which enjoy two benefits: 1) Compactness: each tubelet token is learned by a selective attention mechanism to reduce redundant spatial dependencies from others; 2) Expressiveness: each tubelet token is enabled to align with a semantic instance, i.e., an object or a human, across frames, thanks to agglomeration and linking. The effectiveness and efficiency of TUTOR are verified by extensive experiments. Results shows our method outperforms existing works by large margins, with a relative mAP gain of $16.14\%$ on VidHOI and a 2 points gain on CAD-120 as well as a $4 \times$ speedup.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.