Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Face Recognition Accuracy Across Demographics: Shining a Light Into the Problem (2206.01881v2)

Published 4 Jun 2022 in cs.CV

Abstract: We explore varying face recognition accuracy across demographic groups as a phenomenon partly caused by differences in face illumination. We observe that for a common operational scenario with controlled image acquisition, there is a large difference in face region brightness between African-American and Caucasian, and also a smaller difference between male and female. We show that impostor image pairs with both faces under-exposed, or both overexposed, have an increased false match rate (FMR). Conversely, image pairs with strongly different face brightness have a decreased similarity measure. We propose a brightness information metric to measure variation in brightness in the face and show that face brightness that is too low or too high has reduced information in the face region, providing a cause for the lower accuracy. Based on this, for operational scenarios with controlled image acquisition, illumination should be adjusted for each individual to obtain appropriate face image brightness. This is the first work that we are aware of to explore how the level of brightness of the skin region in a pair of face images (rather than a single image) impacts face recognition accuracy, and to evaluate this as a systematic factor causing unequal accuracy across demographics. The code is at https://github.com/HaiyuWu/FaceBrightness.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com