Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dimension Independent Generalization of DP-SGD for Overparameterized Smooth Convex Optimization (2206.01836v1)

Published 3 Jun 2022 in cs.LG and math.OC

Abstract: This paper considers the generalization performance of differentially private convex learning. We demonstrate that the convergence analysis of Langevin algorithms can be used to obtain new generalization bounds with differential privacy guarantees for DP-SGD. More specifically, by using some recently obtained dimension-independent convergence results for stochastic Langevin algorithms with convex objective functions, we obtain $O(n{-1/4})$ privacy guarantees for DP-SGD with the optimal excess generalization error of $\tilde{O}(n{-1/2})$ for certain classes of overparameterized smooth convex optimization problems. This improves previous DP-SGD results for such problems that contain explicit dimension dependencies, so that the resulting generalization bounds become unsuitable for overparameterized models used in practical applications.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.