Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Learning logic programs by combining programs (2206.01614v3)

Published 1 Jun 2022 in cs.LG, cs.AI, and cs.LO

Abstract: The goal of inductive logic programming is to induce a logic program (a set of logical rules) that generalises training examples. Inducing programs with many rules and literals is a major challenge. To tackle this challenge, we introduce an approach where we learn small non-separable programs and combine them. We implement our approach in a constraint-driven ILP system. Our approach can learn optimal and recursive programs and perform predicate invention. Our experiments on multiple domains, including game playing and program synthesis, show that our approach can drastically outperform existing approaches in terms of predictive accuracies and learning times, sometimes reducing learning times from over an hour to a few seconds.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.