Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Improving the Generation Quality of Autoregressive Slot VAEs (2206.01370v3)

Published 3 Jun 2022 in cs.CV and cs.LG

Abstract: Unconditional scene inference and generation are challenging to learn jointly with a single compositional model. Despite encouraging progress on models that extract object-centric representations (''slots'') from images, unconditional generation of scenes from slots has received less attention. This is primarily because learning the multi-object relations necessary to imagine coherent scenes is difficult. We hypothesize that most existing slot-based models have a limited ability to learn object correlations. We propose two improvements that strengthen object correlation learning. The first is to condition the slots on a global, scene-level variable that captures higher-order correlations between slots. Second, we address the fundamental lack of a canonical order for objects in images by proposing to learn a consistent order to use for the autoregressive generation of scene objects. Specifically, we train an autoregressive slot prior to sequentially generate scene objects following a learned order. Ordered slot inference entails first estimating a randomly ordered set of slots using existing approaches for extracting slots from images, then aligning those slots to ordered slots generated autoregressively with the slot prior. Our experiments across three multi-object environments demonstrate clear gains in unconditional scene generation quality. Detailed ablation studies are also provided that validate the two proposed improvements.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com