Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

QMLP: An Error-Tolerant Nonlinear Quantum MLP Architecture using Parameterized Two-Qubit Gates (2206.01345v1)

Published 3 Jun 2022 in cs.ET and quant-ph

Abstract: Despite potential quantum supremacy, state-of-the-art quantum neural networks (QNNs) suffer from low inference accuracy. First, the current Noisy Intermediate-Scale Quantum (NISQ) devices with high error rates of 0.001 to 0.01 significantly degrade the accuracy of a QNN. Second, although recently proposed Re-Uploading Units (RUUs) introduce some non-linearity into the QNN circuits, the theory behind it is not fully understood. Furthermore, previous RUUs that repeatedly upload original data can only provide marginal accuracy improvements. Third, current QNN circuit ansatz uses fixed two-qubit gates to enforce maximum entanglement capability, making task-specific entanglement tuning impossible, resulting in poor overall performance. In this paper, we propose a Quantum Multilayer Perceptron (QMLP) architecture featured by error-tolerant input embedding, rich nonlinearity, and enhanced variational circuit ansatz with parameterized two-qubit entangling gates. Compared to prior arts, QMLP increases the inference accuracy on the 10-class MNIST dataset by 10% with 2 times fewer quantum gates and 3 times reduced parameters. Our source code is available and can be found in [1]

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.