Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Max-Weight Online Stochastic Matching: Improved Approximations Against the Online Benchmark (2206.01270v1)

Published 2 Jun 2022 in cs.DS

Abstract: In this paper, we study max-weight stochastic matchings on online bipartite graphs under both vertex and edge arrivals. We focus on designing polynomial time approximation algorithms with respect to the online benchmark, which was first considered by Papadimitriou, Pollner, Saberi, and Wajc [EC'21]. In the vertex arrival version of the problem, the goal is to find an approximate max-weight matching of a given bipartite graph when the vertices in one part of the graph arrive online in a fixed order with independent chances of failure. Whenever a vertex arrives we should decide, irrevocably, whether to match it with one of its unmatched neighbors or leave it unmatched forever. There has been a long line of work designing approximation algorithms for different variants of this problem with respect to the offline benchmark (prophet). Papadimitriou et al., however, propose the alternative online benchmark and show that considering this new benchmark allows them to improve the 0.5 approximation ratio, which is the best ratio achievable with respect to the offline benchmark. They provide a 0.51-approximation algorithm which was later improved to 0.526 by Saberi and Wajc [ICALP'21]. The main contribution of this paper is designing a simple algorithm with a significantly improved approximation ratio of (1-1/e) for this problem. We also consider the edge arrival version in which, instead of vertices, edges of the graph arrive in an online fashion with independent chances of failure. Designing approximation algorithms for this problem has also been studied extensively with the best approximation ratio being 0.337 with respect to the offline benchmark. This paper, however, is the first to consider the online benchmark for the edge arrival version of the problem. For this problem, we provide a simple algorithm with an approximation ratio of 0.5 with respect to the online benchmark.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.