Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Positive Unlabeled Contrastive Learning (2206.01206v3)

Published 1 Jun 2022 in cs.LG and cs.AI

Abstract: Self-supervised pretraining on unlabeled data followed by supervised fine-tuning on labeled data is a popular paradigm for learning from limited labeled examples. We extend this paradigm to the classical positive unlabeled (PU) setting, where the task is to learn a binary classifier given only a few labeled positive samples, and (often) a large amount of unlabeled samples (which could be positive or negative). We first propose a simple extension of standard infoNCE family of contrastive losses, to the PU setting; and show that this learns superior representations, as compared to existing unsupervised and supervised approaches. We then develop a simple methodology to pseudo-label the unlabeled samples using a new PU-specific clustering scheme; these pseudo-labels can then be used to train the final (positive vs. negative) classifier. Our method handily outperforms state-of-the-art PU methods over several standard PU benchmark datasets, while not requiring a-priori knowledge of any class prior (which is a common assumption in other PU methods). We also provide a simple theoretical analysis that motivates our methods.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube