Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Self-supervised Learning of Audio Representations from Audio-Visual Data using Spatial Alignment (2206.00970v1)

Published 2 Jun 2022 in eess.AS and cs.SD

Abstract: Learning from audio-visual data offers many possibilities to express correspondence between the audio and visual content, similar to the human perception that relates aural and visual information. In this work, we present a method for self-supervised representation learning based on audio-visual spatial alignment (AVSA), a more sophisticated alignment task than the audio-visual correspondence (AVC). In addition to the correspondence, AVSA also learns from the spatial location of acoustic and visual content. Based on 360$\text{o}$ video and Ambisonics audio, we propose selection of visual objects using object detection, and beamforming of the audio signal towards the detected objects, attempting to learn the spatial alignment between objects and the sound they produce. We investigate the use of spatial audio features to represent the audio input, and different audio formats: Ambisonics, mono, and stereo. Experimental results show a 10 $\%$ improvement on AVSA for the first order ambisonics intensity vector (FOA-IV) in comparison with log-mel spectrogram features; the addition of object-oriented crops also brings significant performance increases for the human action recognition downstream task. A number of audio-only downstream tasks are devised for testing the effectiveness of the learnt audio feature representation, obtaining performance comparable to state-of-the-art methods on acoustic scene classification from ambisonic and binaural audio.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube