Emergent Mind

Abstract

This study considers online learning with general directed feedback graphs. For this problem, we present best-of-both-worlds algorithms that achieve nearly tight regret bounds for adversarial environments as well as poly-logarithmic regret bounds for stochastic environments. As Alon et al. [2015] have shown, tight regret bounds depend on the structure of the feedback graph: strongly observable graphs yield minimax regret of $\tilde{\Theta}( \alpha{1/2} T{1/2} )$, while weakly observable graphs induce minimax regret of $\tilde{\Theta}( \delta{1/3} T{2/3} )$, where $\alpha$ and $\delta$, respectively, represent the independence number of the graph and the domination number of a certain portion of the graph. Our proposed algorithm for strongly observable graphs has a regret bound of $\tilde{O}( \alpha{1/2} T{1/2} ) $ for adversarial environments, as well as of $ {O} ( \frac{\alpha (\ln T)3 }{\Delta{\min}} ) $ for stochastic environments, where $\Delta{\min}$ expresses the minimum suboptimality gap. This result resolves an open question raised by Erez and Koren [2021]. We also provide an algorithm for weakly observable graphs that achieves a regret bound of $\tilde{O}( \delta{1/3}T{2/3} )$ for adversarial environments and poly-logarithmic regret for stochastic environments. The proposed algorithms are based on the follow-the-regularized-leader approach combined with newly designed update rules for learning rates.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.