Dynamic MRI using Learned Transform-based Tensor Low-Rank Network (LT$^2$LR-Net) (2206.00850v2)
Abstract: While low-rank matrix prior has been exploited in dynamic MR image reconstruction and has obtained satisfying performance, tensor low-rank models have recently emerged as powerful alternative representations for three-dimensional dynamic MR datasets. In this paper, we introduce a novel deep unrolling network for dynamic MRI, namely the learned transform-based tensor low-rank network (LT$2$LR-Net). First, we generalize the tensor singular value decomposition (t-SVD) into an arbitrary unitary transform-based version and subsequently propose the novel transformed tensor nuclear norm (TTNN). Then, we design a novel TTNN-based iterative optimization algorithm based on the alternating direction method of multipliers (ADMM) to exploit the tensor low-rank prior in the transformed domain. The corresponding iterative steps are unrolled into the proposed LT$2$LR-Net, where the convolutional neural network (CNN) is incorporated to adaptively learn the transformation from the dynamic MR dataset for more robust and accurate tensor low-rank representations. Experimental results on the cardiac cine MR dataset demonstrate that the proposed framework can provide improved recovery results compared with the state-of-the-art methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.