Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning code summarization from a small and local dataset (2206.00804v1)

Published 2 Jun 2022 in cs.SE and cs.LG

Abstract: Foundation models (e.g., CodeBERT, GraphCodeBERT, CodeT5) work well for many software engineering tasks. These models are pre-trained (using self-supervision) with billions of code tokens, and then fine-tuned with hundreds of thousands of labeled examples, typically drawn from many projects. However, software phenomena can be very project-specific. Vocabulary, and other phenomena vary substantially with each project. Thus, training on project-specific data, and testing on the same project, is a promising idea. This hypothesis has to be evaluated carefully, e.g., in a time-series setting, to prevent training-test leakage. We compare several models and training approaches, including same-project training, cross-project training, training a model especially designed to be sample efficient (and thus prima facie well-suited for learning in a limited-sample same-project setting) and a maximalist hybrid approach, fine-tuning first on many projects in many languages and then training on the same-project. We find that the maximalist hybrid setting provides consistent, substantial gains over the state-of-the-art, on many different projects in both Java and Python.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.