Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Defense Against Gradient Leakage Attacks via Learning to Obscure Data (2206.00769v1)

Published 1 Jun 2022 in cs.LG, cs.CR, and stat.ML

Abstract: Federated learning is considered as an effective privacy-preserving learning mechanism that separates the client's data and model training process. However, federated learning is still under the risk of privacy leakage because of the existence of attackers who deliberately conduct gradient leakage attacks to reconstruct the client data. Recently, popular strategies such as gradient perturbation methods and input encryption methods have been proposed to defend against gradient leakage attacks. Nevertheless, these defenses can either greatly sacrifice the model performance, or be evaded by more advanced attacks. In this paper, we propose a new defense method to protect the privacy of clients' data by learning to obscure data. Our defense method can generate synthetic samples that are totally distinct from the original samples, but they can also maximally preserve their predictive features and guarantee the model performance. Furthermore, our defense strategy makes the gradient leakage attack and its variants extremely difficult to reconstruct the client data. Through extensive experiments, we show that our proposed defense method obtains better privacy protection while preserving high accuracy compared with state-of-the-art methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube