Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Split-kl and PAC-Bayes-split-kl Inequalities for Ternary Random Variables (2206.00706v2)

Published 1 Jun 2022 in stat.ML and cs.LG

Abstract: We present a new concentration of measure inequality for sums of independent bounded random variables, which we name a split-kl inequality. The inequality is particularly well-suited for ternary random variables, which naturally show up in a variety of problems, including analysis of excess losses in classification, analysis of weighted majority votes, and learning with abstention. We demonstrate that for ternary random variables the inequality is simultaneously competitive with the kl inequality, the Empirical Bernstein inequality, and the Unexpected Bernstein inequality, and in certain regimes outperforms all of them. It resolves an open question by Tolstikhin and Seldin [2013] and Mhammedi et al. [2019] on how to match simultaneously the combinatorial power of the kl inequality when the distribution happens to be close to binary and the power of Bernstein inequalities to exploit low variance when the probability mass is concentrated on the middle value. We also derive a PAC-Bayes-split-kl inequality and compare it with the PAC-Bayes-kl, PAC-Bayes-Empirical-Bennett, and PAC-Bayes-Unexpected-Bernstein inequalities in an analysis of excess losses and in an analysis of a weighted majority vote for several UCI datasets. Last but not least, our study provides the first direct comparison of the Empirical Bernstein and Unexpected Bernstein inequalities and their PAC-Bayes extensions.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.