Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Amodal Cityscapes: A New Dataset, its Generation, and an Amodal Semantic Segmentation Challenge Baseline (2206.00527v1)

Published 1 Jun 2022 in cs.CV

Abstract: Amodal perception terms the ability of humans to imagine the entire shapes of occluded objects. This gives humans an advantage to keep track of everything that is going on, especially in crowded situations. Typical perception functions, however, lack amodal perception abilities and are therefore at a disadvantage in situations with occlusions. Complex urban driving scenarios often experience many different types of occlusions and, therefore, amodal perception for automated vehicles is an important task to investigate. In this paper, we consider the task of amodal semantic segmentation and propose a generic way to generate datasets to train amodal semantic segmentation methods. We use this approach to generate an amodal Cityscapes dataset. Moreover, we propose and evaluate a method as baseline on Amodal Cityscapes, showing its applicability for amodal semantic segmentation in automotive environment perception. We provide the means to re-generate this dataset on github.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.