Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

One Policy is Enough: Parallel Exploration with a Single Policy is Near-Optimal for Reward-Free Reinforcement Learning (2205.15891v3)

Published 31 May 2022 in cs.LG and stat.ML

Abstract: Although parallelism has been extensively used in reinforcement learning (RL), the quantitative effects of parallel exploration are not well understood theoretically. We study the benefits of simple parallel exploration for reward-free RL in linear Markov decision processes (MDPs) and two-player zero-sum Markov games (MGs). In contrast to the existing literature, which focuses on approaches that encourage agents to explore a diverse set of policies, we show that using a single policy to guide exploration across all agents is sufficient to obtain an almost-linear speedup in all cases compared to their fully sequential counterpart. Furthermore, we demonstrate that this simple procedure is near-minimax optimal in the reward-free setting for linear MDPs. From a practical perspective, our paper shows that a single policy is sufficient and provably near-optimal for incorporating parallelism during the exploration phase.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.