Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

EMS: Efficient and Effective Massively Multilingual Sentence Embedding Learning (2205.15744v2)

Published 31 May 2022 in cs.CL

Abstract: Massively multilingual sentence representation models, e.g., LASER, SBERT-distill, and LaBSE, help significantly improve cross-lingual downstream tasks. However, the use of a large amount of data or inefficient model architectures results in heavy computation to train a new model according to our preferred languages and domains. To resolve this issue, we introduce efficient and effective massively multilingual sentence embedding (EMS), using cross-lingual token-level reconstruction (XTR) and sentence-level contrastive learning as training objectives. Compared with related studies, the proposed model can be efficiently trained using significantly fewer parallel sentences and GPU computation resources. Empirical results showed that the proposed model significantly yields better or comparable results with regard to cross-lingual sentence retrieval, zero-shot cross-lingual genre classification, and sentiment classification. Ablative analyses demonstrated the efficiency and effectiveness of each component of the proposed model. We release the codes for model training and the EMS pre-trained sentence embedding model, which supports 62 languages ( https://github.com/Mao-KU/EMS ).

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.