Papers
Topics
Authors
Recent
2000 character limit reached

Federated X-Armed Bandit (2205.15268v3)

Published 30 May 2022 in stat.ML and cs.LG

Abstract: This work establishes the first framework of federated $\mathcal{X}$-armed bandit, where different clients face heterogeneous local objective functions defined on the same domain and are required to collaboratively figure out the global optimum. We propose the first federated algorithm for such problems, named \texttt{Fed-PNE}. By utilizing the topological structure of the global objective inside the hierarchical partitioning and the weak smoothness property, our algorithm achieves sublinear cumulative regret with respect to both the number of clients and the evaluation budget. Meanwhile, it only requires logarithmic communications between the central server and clients, protecting the client privacy. Experimental results on synthetic functions and real datasets validate the advantages of \texttt{Fed-PNE} over various centralized and federated baseline algorithms.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.