Papers
Topics
Authors
Recent
2000 character limit reached

Flowification: Everything is a Normalizing Flow (2205.15209v3)

Published 30 May 2022 in cs.LG and stat.ML

Abstract: The two key characteristics of a normalizing flow is that it is invertible (in particular, dimension preserving) and that it monitors the amount by which it changes the likelihood of data points as samples are propagated along the network. Recently, multiple generalizations of normalizing flows have been introduced that relax these two conditions. On the other hand, neural networks only perform a forward pass on the input, there is neither a notion of an inverse of a neural network nor is there one of its likelihood contribution. In this paper we argue that certain neural network architectures can be enriched with a stochastic inverse pass and that their likelihood contribution can be monitored in a way that they fall under the generalized notion of a normalizing flow mentioned above. We term this enrichment flowification. We prove that neural networks only containing linear layers, convolutional layers and invertible activations such as LeakyReLU can be flowified and evaluate them in the generative setting on image datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.