Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Linear versus centred chromatic numbers (2205.15096v2)

Published 30 May 2022 in math.CO and cs.DM

Abstract: $\DeclareMathOperator{\chicen}{\chi_{\mathrm{cen}}}\DeclareMathOperator{\chilin}{\chi_{\mathrm{lin}}}$ A centred colouring of a graph is a vertex colouring in which every connected subgraph contains a vertex whose colour is unique and a \emph{linear colouring} is a vertex colouring in which every (not-necessarily induced) path contains a vertex whose colour is unique. For a graph $G$, the centred chromatic number $\chicen(G)$ and the linear chromatic number $\chilin(G)$ denote the minimum number of distinct colours required for a centred, respectively, linear colouring of $G$. From these definitions, it follows immediately that $\chilin(G)\le \chicen(G)$ for every graph $G$. The centred chromatic number is equivalent to treedepth and has been studied extensively. Much less is known about linear colouring. Kun et al [Algorithmica 83(1)] prove that $\chicen(G) \le \tilde{O}(\chilin(G){190})$ for any graph $G$ and conjecture that $\chicen(G)\le 2\chilin(G)$. Their upper bound was subsequently improved by Czerwinski et al [SIDMA 35(2)] to $\chicen(G)\le\tilde{O}(\chilin(G){19})$. The proof of both upper bounds relies on establishing a lower bound on the linear chromatic number of pseudogrids, which appear in the proof due to their critical relationship to treewidth. Specifically, Kun et al prove that $k\times k$ pseudogrids have linear chromatic number $\Omega(\sqrt{k})$. Our main contribution is establishing a tight bound on the linear chromatic number of pseudogrids, specifically $\chilin(G)\ge \Omega(k)$ for every $k\times k$ pseudogrid $G$. As a consequence we improve the general bound for all graphs to $\chicen(G)\le \tilde{O}(\chilin(G){10})$. In addition, this tight bound gives further evidence in support of Kun et al's conjecture (above) that the centred chromatic number of any graph is upper bounded by a linear function of its linear chromatic number.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube