Linear versus centred chromatic numbers (2205.15096v2)
Abstract: $\DeclareMathOperator{\chicen}{\chi_{\mathrm{cen}}}\DeclareMathOperator{\chilin}{\chi_{\mathrm{lin}}}$ A centred colouring of a graph is a vertex colouring in which every connected subgraph contains a vertex whose colour is unique and a \emph{linear colouring} is a vertex colouring in which every (not-necessarily induced) path contains a vertex whose colour is unique. For a graph $G$, the centred chromatic number $\chicen(G)$ and the linear chromatic number $\chilin(G)$ denote the minimum number of distinct colours required for a centred, respectively, linear colouring of $G$. From these definitions, it follows immediately that $\chilin(G)\le \chicen(G)$ for every graph $G$. The centred chromatic number is equivalent to treedepth and has been studied extensively. Much less is known about linear colouring. Kun et al [Algorithmica 83(1)] prove that $\chicen(G) \le \tilde{O}(\chilin(G){190})$ for any graph $G$ and conjecture that $\chicen(G)\le 2\chilin(G)$. Their upper bound was subsequently improved by Czerwinski et al [SIDMA 35(2)] to $\chicen(G)\le\tilde{O}(\chilin(G){19})$. The proof of both upper bounds relies on establishing a lower bound on the linear chromatic number of pseudogrids, which appear in the proof due to their critical relationship to treewidth. Specifically, Kun et al prove that $k\times k$ pseudogrids have linear chromatic number $\Omega(\sqrt{k})$. Our main contribution is establishing a tight bound on the linear chromatic number of pseudogrids, specifically $\chilin(G)\ge \Omega(k)$ for every $k\times k$ pseudogrid $G$. As a consequence we improve the general bound for all graphs to $\chicen(G)\le \tilde{O}(\chilin(G){10})$. In addition, this tight bound gives further evidence in support of Kun et al's conjecture (above) that the centred chromatic number of any graph is upper bounded by a linear function of its linear chromatic number.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.