Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Embedding Graphs on Grassmann Manifold (2205.15068v1)

Published 30 May 2022 in cs.LG and cs.AI

Abstract: Learning efficient graph representation is the key to favorably addressing downstream tasks on graphs, such as node or graph property prediction. Given the non-Euclidean structural property of graphs, preserving the original graph data's similarity relationship in the embedded space needs specific tools and a similarity metric. This paper develops a new graph representation learning scheme, namely EGG, which embeds approximated second-order graph characteristics into a Grassmann manifold. The proposed strategy leverages graph convolutions to learn hidden representations of the corresponding subspace of the graph, which is then mapped to a Grassmann point of a low dimensional manifold through truncated singular value decomposition (SVD). The established graph embedding approximates denoised correlationship of node attributes, as implemented in the form of a symmetric matrix space for Euclidean calculation. The effectiveness of EGG is demonstrated using both clustering and classification tasks at the node level and graph level. It outperforms baseline models on various benchmarks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.