Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hilbert Curve Projection Distance for Distribution Comparison (2205.15059v4)

Published 30 May 2022 in cs.LG and stat.ML

Abstract: Distribution comparison plays a central role in many machine learning tasks like data classification and generative modeling. In this study, we propose a novel metric, called Hilbert curve projection (HCP) distance, to measure the distance between two probability distributions with low complexity. In particular, we first project two high-dimensional probability distributions using Hilbert curve to obtain a coupling between them, and then calculate the transport distance between these two distributions in the original space, according to the coupling. We show that HCP distance is a proper metric and is well-defined for probability measures with bounded supports. Furthermore, we demonstrate that the modified empirical HCP distance with the $L_p$ cost in the $d$-dimensional space converges to its population counterpart at a rate of no more than $O(n{-1/2\max{d,p}})$. To suppress the curse-of-dimensionality, we also develop two variants of the HCP distance using (learnable) subspace projections. Experiments on both synthetic and real-world data show that our HCP distance works as an effective surrogate of the Wasserstein distance with low complexity and overcomes the drawbacks of the sliced Wasserstein distance.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub