Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learnable Patchmatch and Self-Teaching for Multi-Frame Depth Estimation in Monocular Endoscopy (2205.15034v2)

Published 30 May 2022 in cs.CV

Abstract: This work delves into unsupervised monocular depth estimation in endoscopy, which leverages adjacent frames to establish a supervisory signal during the training phase. For many clinical applications, e.g., surgical navigation, temporally correlated frames are also available at test time. Due to the lack of depth clues, making full use of the temporal correlation among multiple video frames at both phases is crucial for accurate depth estimation. However, several challenges in endoscopic scenes, such as low and homogeneous textures and inter-frame brightness fluctuations, limit the performance gain from the temporal correlation. To fully exploit it, we propose a novel unsupervised multi-frame monocular depth estimation model. The proposed model integrates a learnable patchmatch module to adaptively increase the discriminative ability in regions with low and homogeneous textures, and enforces cross-teaching and self-teaching consistencies to provide efficacious regularizations towards brightness fluctuations. Furthermore, as a byproduct of the self-teaching paradigm, the proposed model is able to improve the depth predictions when more frames are input at test time. We conduct detailed experiments on multiple datasets, including SCARED, EndoSLAM, Hamlyn and SERV-CT. The experimental results indicate that our model exceeds the state-of-the-art competitors. The source code and trained models will be publicly available upon the acceptance.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.