Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
164 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structure of non-negative posets of Dynkin type $\mathbb{A}_n$ (2205.15032v4)

Published 30 May 2022 in math.CO and cs.DM

Abstract: A poset $I=({1,\ldots, n}, \leq_I)$ is called non-negative if the symmetric Gram matrix $G_I:=\frac{1}{2}(C_I + C_I{tr})\in\mathbb{M}_n(\mathbb{R})$ is positive semi-definite, where $C_I\in\mathbb{M}_n(\mathbb{Z})$ is the $(0,1)$-matrix encoding the relation $\leq_I$. Every such a connected poset $I$, up to the $\mathbb{Z}$-congruence of the $G_I$ matrix, is determined by a unique simply-laced Dynkin diagram $\mathrm{Dyn}_I\in{\mathbb{A}_m, \mathbb{D}_m,\mathbb{E}_6,\mathbb{E}_7,\mathbb{E}_8}$. We show that $\mathrm{Dyn}_I=\mathbb{A}_n$ implies that the matrix $G_I$ is of rank $n$ or $n-1$. Moreover, we depict explicit shapes of Hasse digraphs $\mathcal{H}(I)$ of all such posets~$I$ and devise formulae for their number.

Summary

We haven't generated a summary for this paper yet.