Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Approximating k-Edge-Connected Spanning Subgraphs via a Near-Linear Time LP Solver (2205.14978v1)

Published 30 May 2022 in cs.DS

Abstract: In the $k$-edge-connected spanning subgraph ($k$ECSS) problem, our goal is to compute a minimum-cost sub-network that is resilient against up to $k$ link failures: Given an $n$-node $m$-edge graph with a cost function on the edges, our goal is to compute a minimum-cost $k$-edge-connected spanning subgraph. This NP-hard problem generalizes the minimum spanning tree problem and is the "uniform case" of a much broader class of survival network design problems (SNDP). A factor of two has remained the best approximation ratio for polynomial-time algorithms for the whole class of SNDP, even for a special case of $2$ECSS. The fastest $2$-approximation algorithm is however rather slow, taking $O(mn k)$ time [Khuller, Vishkin, STOC'92]. A faster time complexity of $O(n2)$ can be obtained, but with a higher approximation guarantee of $(2k-1)$ [Gabow, Goemans, Williamson, IPCO'93]. Our main contribution is an algorithm that $(1+\epsilon)$-approximates the optimal fractional solution in $\tilde O(m/\epsilon2)$ time (independent of $k$), which can be turned into a $(2+\epsilon)$ approximation algorithm that runs in time $\tilde O\left(\frac{m}{\epsilon2} + \frac{k2n{1.5}}{\epsilon2}\right)$ for (integral) $k$ECSS; this improves the running time of the aforementioned results while keeping the approximation ratio arbitrarily close to a factor of two.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.