Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Stochastic Zeroth Order Gradient and Hessian Estimators: Variance Reduction and Refined Bias Bounds (2205.14737v3)

Published 29 May 2022 in cs.LG and math.OC

Abstract: We study stochastic zeroth order gradient and Hessian estimators for real-valued functions in $\mathbb{R}n$. We show that, via taking finite difference along random orthogonal directions, the variance of the stochastic finite difference estimators can be significantly reduced. In particular, we design estimators for smooth functions such that, if one uses $ \Theta \left( k \right) $ random directions sampled from the Stiefel's manifold $ \text{St} (n,k) $ and finite-difference granularity $\delta$, the variance of the gradient estimator is bounded by $ \mathcal{O} \left( \left( \frac{n}{k} - 1 \right) + \left( \frac{n2}{k} - n \right) \delta2 + \frac{ n2 \delta4 }{ k } \right) $, and the variance of the Hessian estimator is bounded by $\mathcal{O} \left( \left( \frac{n2}{k2} - 1 \right) + \left( \frac{n4}{k2} - n2 \right) \delta2 + \frac{n4 \delta4 }{k2} \right) $. When $k = n$, the variances become negligibly small. In addition, we provide improved bias bounds for the estimators. The bias of both gradient and Hessian estimators for smooth function $f$ is of order $\mathcal{O} \left( \delta2 \Gamma \right)$, where $\delta$ is the finite-difference granularity, and $ \Gamma $ depends on high order derivatives of $f$. Our results are evidenced by empirical observations.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.