Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ComplexGen: CAD Reconstruction by B-Rep Chain Complex Generation (2205.14573v1)

Published 29 May 2022 in cs.CV, cs.AI, and cs.GR

Abstract: We view the reconstruction of CAD models in the boundary representation (B-Rep) as the detection of geometric primitives of different orders, i.e. vertices, edges and surface patches, and the correspondence of primitives, which are holistically modeled as a chain complex, and show that by modeling such comprehensive structures more complete and regularized reconstructions can be achieved. We solve the complex generation problem in two steps. First, we propose a novel neural framework that consists of a sparse CNN encoder for input point cloud processing and a tri-path transformer decoder for generating geometric primitives and their mutual relationships with estimated probabilities. Second, given the probabilistic structure predicted by the neural network, we recover a definite B-Rep chain complex by solving a global optimization maximizing the likelihood under structural validness constraints and applying geometric refinements. Extensive tests on large scale CAD datasets demonstrate that the modeling of B-Rep chain complex structure enables more accurate detection for learning and more constrained reconstruction for optimization, leading to structurally more faithful and complete CAD B-Rep models than previous results.

Citations (21)

Summary

We haven't generated a summary for this paper yet.