Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Object-wise Masked Autoencoders for Fast Pre-training (2205.14338v1)

Published 28 May 2022 in cs.CV and cs.LG

Abstract: Self-supervised pre-training for images without labels has recently achieved promising performance in image classification. The success of transformer-based methods, ViT and MAE, draws the community's attention to the design of backbone architecture and self-supervised task. In this work, we show that current masked image encoding models learn the underlying relationship between all objects in the whole scene, instead of a single object representation. Therefore, those methods bring a lot of compute time for self-supervised pre-training. To solve this issue, we introduce a novel object selection and division strategy to drop non-object patches for learning object-wise representations by selective reconstruction with interested region masks. We refer to this method ObjMAE. Extensive experiments on four commonly-used datasets demonstrate the effectiveness of our model in reducing the compute cost by 72% while achieving competitive performance. Furthermore, we investigate the inter-object and intra-object relationship and find that the latter is crucial for self-supervised pre-training.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)