Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Representation Decomposition for Rate-Invariant Speaker Verification (2205.14294v1)

Published 28 May 2022 in eess.AS

Abstract: While promising performance for speaker verification has been achieved by deep speaker embeddings, the advantage would reduce in the case of speaking-style variability. Speaking rate mismatch is often observed in practical speaker verification systems, which may actually degrade the system performance. To reduce intra-class discrepancy caused by speaking rate, we propose a deep representation decomposition approach with adversarial learning to learn speaking rate-invariant speaker embeddings. Specifically, adopting an attention block, we decompose the original embedding into an identity-related component and a rate-related component through multi-task training. Additionally, to reduce the latent relationship between the two decomposed components, we further propose a cosine mapping block to train the parameters adversarially to minimize the cosine similarity between the two decomposed components. As a result, identity-related features become robust to speaking rate and then are used for verification. Experiments are conducted on VoxCeleb1 data and HI-MIA data to demonstrate the effectiveness of our proposed approach.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.