Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Private and Byzantine-Proof Cooperative Decision-Making (2205.14174v1)

Published 27 May 2022 in stat.ML, cs.CR, cs.LG, and cs.MA

Abstract: The cooperative bandit problem is a multi-agent decision problem involving a group of agents that interact simultaneously with a multi-armed bandit, while communicating over a network with delays. The central idea in this problem is to design algorithms that can efficiently leverage communication to obtain improvements over acting in isolation. In this paper, we investigate the stochastic bandit problem under two settings - (a) when the agents wish to make their communication private with respect to the action sequence, and (b) when the agents can be byzantine, i.e., they provide (stochastically) incorrect information. For both these problem settings, we provide upper-confidence bound algorithms that obtain optimal regret while being (a) differentially-private and (b) tolerant to byzantine agents. Our decentralized algorithms require no information about the network of connectivity between agents, making them scalable to large dynamic systems. We test our algorithms on a competitive benchmark of random graphs and demonstrate their superior performance with respect to existing robust algorithms. We hope that our work serves as an important step towards creating distributed decision-making systems that maintain privacy.

Citations (24)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube