Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Group-level Brain Decoding with Deep Learning (2205.14102v3)

Published 27 May 2022 in cs.LG, eess.SP, and q-bio.NC

Abstract: Decoding brain imaging data are gaining popularity, with applications in brain-computer interfaces and the study of neural representations. Decoding is typicallysubject-specific and does not generalise well over subjects, due to high amounts ofbetween subject variability. Techniques that overcome this will not only providericher neuroscientific insights but also make it possible for group-level models to out-perform subject-specific models. Here, we propose a method that uses subjectembedding, analogous to word embedding in natural language processing, to learnand exploit the structure in between-subject variability as part of a decoding model,our adaptation of the WaveNet architecture for classification. We apply this to mag-netoencephalography data, where 15 subjects viewed 118 different images, with30 examples per image; to classify images using the entire 1 s window followingimage presentation. We show that the combination of deep learning and subjectembedding is crucial to closing the performance gap between subject- and group-level decoding models. Importantly, group models outperform subject models onlow-accuracy subjects (although slightly impair high-accuracy subjects) and can behelpful for initialising subject models. While we have not generally found group-levelmodels to perform better than subject-level models, the performance of groupmodelling is expected to be even higher with bigger datasets. In order to providephysiological interpretation at the group level, we make use of permutation featureimportance. This provides insights into the spatiotemporal and spectral informationencoded in the models. All code is available on GitHub (https://github.com/ricsinaruto/MEG-group-decode).

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.