Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Information measures and geometry of the hyperbolic exponential families of Poincaré and hyperboloid distributions (2205.13984v4)

Published 27 May 2022 in cs.IT and math.IT

Abstract: We study various information-theoretic measures and the information geometry of the Poincar\'e distributions and the related hyperboloid distributions, and prove that their statistical mixture models are universal density estimators of smooth densities in hyperbolic spaces. The Poincar\'e and the hyperboloid distributions are two types of hyperbolic probability distributions defined using different models of hyperbolic geometry. Namely, the Poincar\'e distributions form a triparametric bivariate exponential family whose sample space is the hyperbolic Poincar\'e upper-half plane and natural parameter space is the open 3D convex cone of two-by-two positive-definite matrices. The family of hyperboloid distributions form another exponential family which has sample space the forward sheet of the two-sheeted unit hyperboloid modeling hyperbolic geometry. In the first part, we prove that all $f$-divergences between Poincar\'e distributions can be expressed using three canonical terms using Eaton's framework of maximal group invariance. We also show that the $f$-divergences between any two Poincar\'e distributions are asymmetric except when those distributions belong to a same leaf of a particular foliation of the parameter space. We report closed-form formula for the Fisher information matrix, the Shannon's differential entropy and the Kullback-Leibler divergence. and Bhattacharyya distances between such distributions using the framework of exponential families. In the second part, we state the corresponding results for the exponential family of hyperboloid distributions by highlighting a parameter correspondence between the Poincar\'e and the hyperboloid distributions. Finally, we describe a random generator to draw variates and present two Monte Carlo methods to stochastically estimate numerically $f$-divergences between hyperbolic distributions.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com