Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Task-load-Aware Game-Theoretic Framework for Wireless Federated Learning (2205.13888v4)

Published 27 May 2022 in cs.GT

Abstract: Federated learning (FL) has been proposed as a popular learning framework to protect the users' data privacy but it has difficulties in motivating the users to participate in task training. This paper proposes a Bertrand-game-based framework for FL in wireless networks, where the model server as a resource buyer can issue an FL task, whereas the employed user equipment (UEs) as the resource sellers can help train the model by using their local data. Specially, the influence of time-varying \textit{task load} and \textit{channel quality} on UE's motivation to participate in FL is considered. Firstly, we adopt the finite-state discrete-time Markov chain (FSDT-MC) method to predict the \textit{existing task load} and \textit{channel gain} of a UE during a FL task. Depending on the performance metrics set by the model server and the estimated overall energy cost for engaging in the FL task, each UE seeks the best price to maximize its own profit in the game. To this end, the Nash equilibrium (NE) of the game is obtained in closed form, and a distributed iterative algorithm is also developed to find the NE. Simulation result verifies the effectiveness of the proposed approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jiawei Liu (156 papers)
  2. Kezhi Wang (106 papers)
  3. Kun Yang (227 papers)
  4. GuoPeng Zhang (10 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.