Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Look at Improving Robustness in Visual-inertial SLAM by Moment Matching (2205.13821v1)

Published 27 May 2022 in cs.RO and cs.CV

Abstract: The fusion of camera sensor and inertial data is a leading method for ego-motion tracking in autonomous and smart devices. State estimation techniques that rely on non-linear filtering are a strong paradigm for solving the associated information fusion task. The de facto inference method in this space is the celebrated extended Kalman filter (EKF), which relies on first-order linearizations of both the dynamical and measurement model. This paper takes a critical look at the practical implications and limitations posed by the EKF, especially under faulty visual feature associations and the presence of strong confounding noise. As an alternative, we revisit the assumed density formulation of Bayesian filtering and employ a moment matching (unscented Kalman filtering) approach to both visual-inertial odometry and visual SLAM. Our results highlight important aspects in robustness both in dynamics propagation and visual measurement updates, and we show state-of-the-art results on EuRoC MAV drone data benchmark.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.