Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

NLU for Game-based Learning in Real: Initial Evaluations (2205.13754v1)

Published 27 May 2022 in cs.CL and cs.HC

Abstract: Intelligent systems designed for play-based interactions should be contextually aware of the users and their surroundings. Spoken Dialogue Systems (SDS) are critical for these interactive agents to carry out effective goal-oriented communication with users in real-time. For the real-world (i.e., in-the-wild) deployment of such conversational agents, improving the Natural Language Understanding (NLU) module of the goal-oriented SDS pipeline is crucial, especially with limited task-specific datasets. This study explores the potential benefits of a recently proposed transformer-based multi-task NLU architecture, mainly to perform Intent Recognition on small-size domain-specific educational game datasets. The evaluation datasets were collected from children practicing basic math concepts via play-based interactions in game-based learning settings. We investigate the NLU performances on the initial proof-of-concept game datasets versus the real-world deployment datasets and observe anticipated performance drops in-the-wild. We have shown that compared to the more straightforward baseline approaches, Dual Intent and Entity Transformer (DIET) architecture is robust enough to handle real-world data to a large extent for the Intent Recognition task on these domain-specific in-the-wild game datasets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.