NLU for Game-based Learning in Real: Initial Evaluations (2205.13754v1)
Abstract: Intelligent systems designed for play-based interactions should be contextually aware of the users and their surroundings. Spoken Dialogue Systems (SDS) are critical for these interactive agents to carry out effective goal-oriented communication with users in real-time. For the real-world (i.e., in-the-wild) deployment of such conversational agents, improving the Natural Language Understanding (NLU) module of the goal-oriented SDS pipeline is crucial, especially with limited task-specific datasets. This study explores the potential benefits of a recently proposed transformer-based multi-task NLU architecture, mainly to perform Intent Recognition on small-size domain-specific educational game datasets. The evaluation datasets were collected from children practicing basic math concepts via play-based interactions in game-based learning settings. We investigate the NLU performances on the initial proof-of-concept game datasets versus the real-world deployment datasets and observe anticipated performance drops in-the-wild. We have shown that compared to the more straightforward baseline approaches, Dual Intent and Entity Transformer (DIET) architecture is robust enough to handle real-world data to a large extent for the Intent Recognition task on these domain-specific in-the-wild game datasets.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.