Variance-Aware Sparse Linear Bandits (2205.13450v3)
Abstract: It is well-known that for sparse linear bandits, when ignoring the dependency on sparsity which is much smaller than the ambient dimension, the worst-case minimax regret is $\widetilde{\Theta}\left(\sqrt{dT}\right)$ where $d$ is the ambient dimension and $T$ is the number of rounds. On the other hand, in the benign setting where there is no noise and the action set is the unit sphere, one can use divide-and-conquer to achieve $\widetilde{\mathcal O}(1)$ regret, which is (nearly) independent of $d$ and $T$. In this paper, we present the first variance-aware regret guarantee for sparse linear bandits: $\widetilde{\mathcal O}\left(\sqrt{d\sum_{t=1}T \sigma_t2} + 1\right)$, where $\sigma_t2$ is the variance of the noise at the $t$-th round. This bound naturally interpolates the regret bounds for the worst-case constant-variance regime (i.e., $\sigma_t \equiv \Omega(1)$) and the benign deterministic regimes (i.e., $\sigma_t \equiv 0$). To achieve this variance-aware regret guarantee, we develop a general framework that converts any variance-aware linear bandit algorithm to a variance-aware algorithm for sparse linear bandits in a "black-box" manner. Specifically, we take two recent algorithms as black boxes to illustrate that the claimed bounds indeed hold, where the first algorithm can handle unknown-variance cases and the second one is more efficient.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.