Emergent Mind

Variance-Aware Sparse Linear Bandits

(2205.13450)
Published May 26, 2022 in cs.LG , cs.AI , and stat.ML

Abstract

It is well-known that for sparse linear bandits, when ignoring the dependency on sparsity which is much smaller than the ambient dimension, the worst-case minimax regret is $\widetilde{\Theta}\left(\sqrt{dT}\right)$ where $d$ is the ambient dimension and $T$ is the number of rounds. On the other hand, in the benign setting where there is no noise and the action set is the unit sphere, one can use divide-and-conquer to achieve $\widetilde{\mathcal O}(1)$ regret, which is (nearly) independent of $d$ and $T$. In this paper, we present the first variance-aware regret guarantee for sparse linear bandits: $\widetilde{\mathcal O}\left(\sqrt{d\sum{t=1}T \sigmat2} + 1\right)$, where $\sigmat2$ is the variance of the noise at the $t$-th round. This bound naturally interpolates the regret bounds for the worst-case constant-variance regime (i.e., $\sigmat \equiv \Omega(1)$) and the benign deterministic regimes (i.e., $\sigma_t \equiv 0$). To achieve this variance-aware regret guarantee, we develop a general framework that converts any variance-aware linear bandit algorithm to a variance-aware algorithm for sparse linear bandits in a "black-box" manner. Specifically, we take two recent algorithms as black boxes to illustrate that the claimed bounds indeed hold, where the first algorithm can handle unknown-variance cases and the second one is more efficient.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.