Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

AntiBenford Subgraphs: Unsupervised Anomaly Detection in Financial Networks (2205.13426v1)

Published 26 May 2022 in cs.SI and cs.CE

Abstract: Benford's law describes the distribution of the first digit of numbers appearing in a wide variety of numerical data, including tax records, and election outcomes, and has been used to raise "red flags" about potential anomalies in the data such as tax evasion. In this work, we ask the following novel question: given a large transaction or financial graph, how do we find a set of nodes that perform many transactions among each other that also deviate significantly from Benford's law? We propose the AntiBenford subgraph framework that is founded on well-established statistical principles. Furthermore, we design an efficient algorithm that finds AntiBenford subgraphs in near-linear time on real data. We evaluate our framework on both real and synthetic data against a variety of competitors. We show empirically that our proposed framework enables the detection of anomalous subgraphs in cryptocurrency transaction networks that go undetected by state-of-the-art graph-based anomaly detection methods. Our empirical findings show that our \ab framework is able to mine anomalous subgraphs, and provide novel insights into financial transaction data. The code and the datasets are available at \url{https://github.com/tsourakakis-lab/antibenford-subgraphs}.

Citations (40)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.