Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

LeiBi@COLIEE 2022: Aggregating Tuned Lexical Models with a Cluster-driven BERT-based Model for Case Law Retrieval (2205.13351v1)

Published 26 May 2022 in cs.IR

Abstract: This paper summarizes our approaches submitted to the case law retrieval task in the Competition on Legal Information Extraction/Entailment (COLIEE) 2022. Our methodology consists of four steps; in detail, given a legal case as a query, we reformulate it by extracting various meaningful sentences or n-grams. Then, we utilize the pre-processed query case to retrieve an initial set of possible relevant legal cases, which we further re-rank. Lastly, we aggregate the relevance scores obtained by the first stage and the re-ranking models to improve retrieval effectiveness. In each step of our methodology, we explore various well-known and novel methods. In particular, to reformulate the query cases aiming to make them shorter, we extract unigrams using three different statistical methods: KLI, PLM, IDF-r, as well as models that leverage embeddings (e.g., KeyBERT). Moreover, we investigate if automatic summarization using Longformer-Encoder-Decoder (LED) can produce an effective query representation for this retrieval task. Furthermore, we propose a novel re-ranking cluster-driven approach, which leverages Sentence-BERT models that are pre-tuned on large amounts of data for embedding sentences from query and candidate documents. Finally, we employ a linear aggregation method to combine the relevance scores obtained by traditional IR models and neural-based models, aiming to incorporate the semantic understanding of neural models and the statistically measured topical relevance. We show that aggregating these relevance scores can improve the overall retrieval effectiveness.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.