Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Computing homomorphisms in hereditary graph classes: the peculiar case of the 5-wheel and graphs with no long claws (2205.13270v1)

Published 26 May 2022 in math.CO and cs.DS

Abstract: For graphs $G$ and $H$, an $H$-coloring of $G$ is an edge-preserving mapping from $V(G)$ to $V(H)$. In the $H$-Coloring problem the graph $H$ is fixed and we ask whether an instance graph $G$ admits an $H$-coloring. A generalization of this problem is $H$-ColoringExt, where some vertices of $G$ are already mapped to vertices of $H$ and we ask if this partial mapping can be extended to an $H$-coloring. We study the complexity of variants of $H$-Coloring in $F$-free graphs, i.e., graphs excluding a fixed graph $F$ as an induced subgraph. For integers $a,b,c \geq 1$, by $S_{a,b,c}$ we denote the graph obtained by identifying one endvertex of three paths on $a+1$, $b+1$, and $c+1$ vertices, respectively. For odd $k \geq 5$, by $W_k$ we denote the graph obtained from the $k$-cycle by adding a universal vertex. As our main algorithmic result we show that $W_5$-ColoringExt is polynomial-time solvable in $S_{2,1,1}$-free graphs. This result exhibits an interesting non-monotonicity of $H$-ColoringExt with respect to taking induced subgraphs of $H$. Indeed, $W_5$ contains a triangle, and $K_3$-Coloring, i.e., classical 3-coloring, is NP-hard already in claw-free (i.e., $S_{1,1,1}$-free) graphs. Our algorithm is based on two main observations: 1. $W_5$-ColoringExt in $S_{2,1,1}$-free graphs can be in polynomial time reduced to a variant of the problem of finding an independent set intersecting all triangles, and 2. the latter problem can be solved in polynomial time in $S_{2,1,1}$-free graphs. We complement this algorithmic result with several negative ones. In particular, we show that $W_5$-ColoringExt is NP-hard in $S_{3,3,3}$-free graphs. This is again uncommon, as usually problems that are NP-hard in $S_{a,b,c}$-free graphs for some constant $a,b,c$ are already hard in claw-free graphs.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.