Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Episodic Logit-Q Dynamics for Efficient Learning in Stochastic Teams (2205.13266v2)

Published 26 May 2022 in cs.GT

Abstract: We present new learning dynamics combining (independent) log-linear learning and value iteration for stochastic games within the auxiliary stage game framework. The dynamics presented provably attain the efficient equilibrium (also known as optimal equilibrium) in identical-interest stochastic games, beyond the recent concentration of progress on provable convergence to some (possibly inefficient) equilibrium. The dynamics are also independent in the sense that agents take actions consistent with their local viewpoint to a reasonable extent rather than seeking equilibrium. These aspects can be of practical interest in the control applications of intelligent and autonomous systems. The key challenges are the convergence to an inefficient equilibrium and the non-stationarity of the environment from a single agent's viewpoint due to the adaptation of others. The log-linear update plays an important role in addressing the former. We address the latter through the play-in-episodes scheme in which the agents update their Q-function estimates only at the end of the episodes.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.