Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On Collective Robustness of Bagging Against Data Poisoning (2205.13176v2)

Published 26 May 2022 in cs.CR

Abstract: Bootstrap aggregating (bagging) is an effective ensemble protocol, which is believed can enhance robustness by its majority voting mechanism. Recent works further prove the sample-wise robustness certificates for certain forms of bagging (e.g. partition aggregation). Beyond these particular forms, in this paper, \emph{we propose the first collective certification for general bagging to compute the tight robustness against the global poisoning attack}. Specifically, we compute the maximum number of simultaneously changed predictions via solving a binary integer linear programming (BILP) problem. Then we analyze the robustness of vanilla bagging and give the upper bound of the tolerable poison budget. Based on this analysis, \emph{we propose hash bagging} to improve the robustness of vanilla bagging almost for free. This is achieved by modifying the random subsampling in vanilla bagging to a hash-based deterministic subsampling, as a way of controlling the influence scope for each poisoning sample universally. Our extensive experiments show the notable advantage in terms of applicability and robustness.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.