Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Reliability of Computing-in-Memory Accelerators for Deep Neural Networks (2205.13018v1)

Published 25 May 2022 in cs.AR

Abstract: Computing-in-memory with emerging non-volatile memory (nvCiM) is shown to be a promising candidate for accelerating deep neural networks (DNNs) with high energy efficiency. However, most non-volatile memory (NVM) devices suffer from reliability issues, resulting in a difference between actual data involved in the nvCiM computation and the weight value trained in the data center. Thus, models actually deployed on nvCiM platforms achieve lower accuracy than their counterparts trained on the conventional hardware (e.g., GPUs). In this chapter, we first offer a brief introduction to the opportunities and challenges of nvCiM DNN accelerators and then show the properties of different types of NVM devices. We then introduce the general architecture of nvCiM DNN accelerators. After that, we discuss the source of unreliability and how to efficiently model their impact. Finally, we introduce representative works that mitigate the impact of device variations.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.