Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Reliability of Computing-in-Memory Accelerators for Deep Neural Networks (2205.13018v1)

Published 25 May 2022 in cs.AR

Abstract: Computing-in-memory with emerging non-volatile memory (nvCiM) is shown to be a promising candidate for accelerating deep neural networks (DNNs) with high energy efficiency. However, most non-volatile memory (NVM) devices suffer from reliability issues, resulting in a difference between actual data involved in the nvCiM computation and the weight value trained in the data center. Thus, models actually deployed on nvCiM platforms achieve lower accuracy than their counterparts trained on the conventional hardware (e.g., GPUs). In this chapter, we first offer a brief introduction to the opportunities and challenges of nvCiM DNN accelerators and then show the properties of different types of NVM devices. We then introduce the general architecture of nvCiM DNN accelerators. After that, we discuss the source of unreliability and how to efficiently model their impact. Finally, we introduce representative works that mitigate the impact of device variations.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube