Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards Symbolic Time Series Representation Improved by Kernel Density Estimators (2205.12960v1)

Published 25 May 2022 in cs.LG and cs.AI

Abstract: This paper deals with symbolic time series representation. It builds up on the popular mapping technique Symbolic Aggregate approXimation algorithm (SAX), which is extensively utilized in sequence classification, pattern mining, anomaly detection, time series indexing and other data mining tasks. However, the disadvantage of this method is, that it works reliably only for time series with Gaussian-like distribution. In our previous work we have proposed an improvement of SAX, called dwSAX, which can deal with Gaussian as well as non-Gaussian data distribution. Recently we have made further progress in our solution - edwSAX. Our goal was to optimally cover the information space by means of sufficient alphabet utilization; and to satisfy lower bounding criterion as tight as possible. We describe here our approach, including evaluation on commonly employed tasks such as time series reconstruction error and Euclidean distance lower bounding with promising improvements over SAX.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.