Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fairness of Exposure in Light of Incomplete Exposure Estimation (2205.12901v1)

Published 25 May 2022 in cs.IR

Abstract: Fairness of exposure is a commonly used notion of fairness for ranking systems. It is based on the idea that all items or item groups should get exposure proportional to the merit of the item or the collective merit of the items in the group. Often, stochastic ranking policies are used to ensure fairness of exposure. Previous work unrealistically assumes that we can reliably estimate the expected exposure for all items in each ranking produced by the stochastic policy. In this work, we discuss how to approach fairness of exposure in cases where the policy contains rankings of which, due to inter-item dependencies, we cannot reliably estimate the exposure distribution. In such cases, we cannot determine whether the policy can be considered fair. Our contributions in this paper are twofold. First, we define a method called FELIX for finding stochastic policies that avoid showing rankings with unknown exposure distribution to the user without having to compromise user utility or item fairness. Second, we extend the study of fairness of exposure to the top-k setting and also assess FELIX in this setting. We find that FELIX can significantly reduce the number of rankings with unknown exposure distribution without a drop in user utility or fairness compared to existing fair ranking methods, both for full-length and top-k rankings. This is an important first step in developing fair ranking methods for cases where we have incomplete knowledge about the user's behaviour.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube