Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Surprises in adversarially-trained linear regression (2205.12695v2)

Published 25 May 2022 in stat.ML, cs.CR, cs.LG, eess.SP, math.ST, and stat.TH

Abstract: State-of-the-art machine learning models can be vulnerable to very small input perturbations that are adversarially constructed. Adversarial training is an effective approach to defend against such examples. It is formulated as a min-max problem, searching for the best solution when the training data was corrupted by the worst-case attacks. For linear regression problems, adversarial training can be formulated as a convex problem. We use this reformulation to make two technical contributions: First, we formulate the training problem as an instance of robust regression to reveal its connection to parameter-shrinking methods, specifically that $\ell_\infty$-adversarial training produces sparse solutions. Secondly, we study adversarial training in the overparameterized regime, i.e. when there are more parameters than data. We prove that adversarial training with small disturbances gives the solution with the minimum-norm that interpolates the training data. Ridge regression and lasso approximate such interpolating solutions as their regularization parameter vanishes. By contrast, for adversarial training, the transition into the interpolation regime is abrupt and for non-zero values of disturbance. This result is proved and illustrated with numerical examples.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.