Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning from time-dependent streaming data with online stochastic algorithms (2205.12549v2)

Published 25 May 2022 in cs.LG, math.OC, and stat.ML

Abstract: This paper addresses stochastic optimization in a streaming setting with time-dependent and biased gradient estimates. We analyze several first-order methods, including Stochastic Gradient Descent (SGD), mini-batch SGD, and time-varying mini-batch SGD, along with their Polyak-Ruppert averages. Our non-asymptotic analysis establishes novel heuristics that link dependence, biases, and convexity levels, enabling accelerated convergence. Specifically, our findings demonstrate that (i) time-varying mini-batch SGD methods have the capability to break long- and short-range dependence structures, (ii) biased SGD methods can achieve comparable performance to their unbiased counterparts, and (iii) incorporating Polyak-Ruppert averaging can accelerate the convergence of the stochastic optimization algorithms. To validate our theoretical findings, we conduct a series of experiments using both simulated and real-life time-dependent data.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.