Papers
Topics
Authors
Recent
2000 character limit reached

Chunk-based Nearest Neighbor Machine Translation (2205.12230v2)

Published 24 May 2022 in cs.CL

Abstract: Semi-parametric models, which augment generation with retrieval, have led to impressive results in language modeling and machine translation, due to their ability to retrieve fine-grained information from a datastore of examples. One of the most prominent approaches, $k$NN-MT, exhibits strong domain adaptation capabilities by retrieving tokens from domain-specific datastores \citep{khandelwal2020nearest}. However, $k$NN-MT requires an expensive retrieval operation for every single generated token, leading to a very low decoding speed (around 8 times slower than a parametric model). In this paper, we introduce a \textit{chunk-based} $k$NN-MT model which retrieves chunks of tokens from the datastore, instead of a single token. We propose several strategies for incorporating the retrieved chunks into the generation process, and for selecting the steps at which the model needs to search for neighbors in the datastore. Experiments on machine translation in two settings, static and ``on-the-fly'' domain adaptation, show that the chunk-based $k$NN-MT model leads to significant speed-ups (up to 4 times) with only a small drop in translation quality.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.