Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Data driven gradient flows (2205.12172v1)

Published 24 May 2022 in math.NA, cs.NA, math.AP, and math.DS

Abstract: We present a framework enabling variational data assimilation for gradient flows in general metric spaces, based on the minimizing movement (or Jordan-Kinderlehrer-Otto) approximation scheme. After discussing stability properties in the most general case, we specialise to the space of probability measures endowed with the Wasserstein distance. This setting covers many non-linear partial differential equations (PDEs), such as the porous medium equation or general drift-diffusion-aggregation equations, which can be treated by our methods independent of their respective properties (such as finite speed of propagation or blow-up). We then focus on the numerical implementation of our approach using an primal-dual algorithm. The strength of our approach lies in the fact that by simply changing the driving functional, a wide range of PDEs can be treated without the need to adopt the numerical scheme. We conclude by presenting detailed numerical examples.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.