Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Arbitrarily high-order energy-preserving schemes for the Zakharov-Rubenchik equation (2205.12154v2)

Published 24 May 2022 in math.NA and cs.NA

Abstract: In this paper, we present a novel class of high-order energy-preserving schemes for solving the Zakharov-Rubenchik equations. The main idea of the scheme is first to introduce an quadratic auxiliary variable to transform the Hamiltonian energy into a modified quadratic energy and the original system is then reformulated into an equivalent system which satisfies the mass, modified energy as well as two linear invariants. The symplectic Runge-Kutta method in time, together with the Fourier pseudo-spectral method in space is employed to compute the solution of the reformulated system. The main benefit of the proposed schemes is that it can achieve arbitrarily high-order accurate in time and conserve the three invariants: mass, Hamiltonian energy and two linear invariants. In addition, an efficient fixed-point iteration is proposed to solve the resulting nonlinear equations of the proposed schemes. Several experiments are addressed to validate the theoretical results.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.